top of page

PYTHON 

Data science with python syllabus

1st week

Basics of Python(Duration 6 hours)

Python Introduction

Introduction

Data structures in python

            What is Python

            Why Python

            Installation

            Jupyter notebook

            Basics of python

            Lists

            Tuples

            Dictionaries

            Sets

Control structures in python

            If-Elif-Else

            Loops

            Comprehension

            Functions

            Map, Filter and Reduce

Functions

Arrays

Selection by position and labels(ILoc,Loc)

Graded questions

2nd week

Data science with Python

Introduction to Numpy

            Introduction

            Numpy basics

            Creating Numpy arrays

            Structure and content of arrays

            Subset, slice, index and iterate through arrays

            Multidimensional arrays

            Computation times in numpy and standard python lists

Operations on numpy arrays

            Basic operations

            Operations on arrays

            Basic linear algebra operations

Introduction to pandas

            Introduction

            Pandas basics

            Indexing and selecting data

            Merge and append

            Grouping and summarizing data frames

            Lambda function & pivot tables

Getting and cleaning data

            Introduction

            Reading Delimited and Relational Databases

            Reading Data from websites

            Getting Data from APIs

            Reading Data from PDF files

            Cleaning Datasets

Graded questions

3rd week

     Assignment

4th week

     Case study

5th week

Data Visualization

Visualization Purpose and Intro

            Visualization examples

            Understanding chart type

Plots for Data Distribution

            Introduction

            Components of a plot

            Subplots

            Functionalities of plots

            Univariate distributions

            Univariate distributions-rug plots

            Bivariate distributions

            Bivariate distributions plotting pairwise relationships

Time Series and Discrete Data Plotting

            Plotting distributions across categories

            Plotting aggregate values across categories

            Time series data

Graded questions

6th week

EDA                

Data Sourcing

            Introduction to EDA

            Public and private data

            Exercise with private and public data

Data Cleansing Methods-Imputation

            Fixing rows and columns

            Handling missing values

            Standardizing values

            Invalid values

            Filtering data

            imputation

Univariate  and Segmented Univariate Analysis

            Unordered categorical variable analysis

            Ordered categorical variable analysis

            Basis of segmentation

            Way of segmentation

            Comparison of other metrics

Bivariate Analysis

            Bivariate analysis on continuous variables

            Correlation

            Bivariate analysis on categorical variables

Derived Metrics

            Introduction to derived metrics

            Type driven metrics

            Business driven metrics

            Data driven metrics

Graded questions

7th week

            Assignment

bottom of page